Photo Friday (#picpickoftheweek)

My graduate student, Sean Hill, became the Hanson Research Group twitter account manager last week. We first talked about what is and isn’t acceptable to post on the internet. Then Sean explained to me the nuances of hash tags and how I’ve underutilized them.  He also suggested something brilliant: a photo of the week.

One of the things I like most about doing research in molecular photophysics is the beautiful color chemistry. Now, every Friday, Sean will tweet (#picpickoftheweek) our best photo taken during the prior week. Our first image (below) is very fun and depicts a photon upconversion solution.


This image shows green laser pointer light (532 nm) causing blue (~430 nm) emission from the solution.  What makes this image really interesting, from a photophysics standpoint, is that we’re  observing the conversion of lower energy green photons into higher energy blue photons.

The reverse—higher energy blue light turning into lower energy green light—is easy. Many molecules absorb a single high energy photon and then emit a single lower energy photon with some energy lost in the process due to vibrational relaxation.  The more difficult green-to-blue light change depicted above is only possible if we combine the energy from two green photons to produce one higher energy blue photon.  This process is known as photon upconversion.

While it can be observed in inorganic nanoparticles, the solution above is a mixture of two types of molecules that undergo excitation, energy transfer, triplet-triplet annihilation and then emission.  Our research group is interested in studying these upconversion systems because they could potentially provide a mechanism to harness low energy light and increase the theoretical maximum solar cell efficiency from 33% to >40%. If you’re interested in learning more about photon upconversion through triplet-triplet annihilation, here is a good review article.

Follow us, @HansonFSU, on twitter for more molecular color chemistry.


  1. Awesome! That’s pretty cool 🙂

  2. This is neat, thank you for doing this.

  3. “Photon upconversion.” Is this any different from “multiple photon excitation” or “multiple photon absorption.” Very fascinating. We used IR lasers to generate visible light, but I’d never seen it with such low powered lasers before. Great picture.

  4. Pingback: Update: Photo Friday (#picpickoftheweek) » Chemistry Blog

Leave a Reply

Your email address will not be published. Required fields are marked *