fun

Graduating My First PhDs

It’s been far too long since I’ve written a blog post, but I think I have a good excuse: I’ve been focusing on getting tenure. It’s been a 5-year, assistant professor roller coaster ride. But the ride is nearly over. Weirdly, it feels like just yesterday, but also a lifetime ago, that I shared my experience during the job search, wrote my memoir of a first year assistant professor, and captured our first year in lab with a time-lapse camera. My tenure package is submitted and my external letter requests are out. Thankfully, my group has been very productive and we’ve published some really solid science. I’m optimistic about tenure and it is honestly a relief to have my portion of the process behind me.

My tenure timeline also coincides with the bittersweet experience of graduating my first PhD students. While I am not a fan of ceremonies for the sake of ceremonies, I can get behind the pomp and circumstance surrounding a PhD graduation. I sat through two different 3-hour graduation ceremonies, one for the College of Arts & Sciences and one for the College of Engineering, and it was worth it. It isn’t every day that you get to be a central part of a centuries-old tradition. I hooded my students, just as my advisor hooded me, and his advisor before him, in a chain that dates back to the earliest Ph.D.’s over 500 years ago. While the thesis defense is typically anticlimactic, the Ph.D. hooding ceremony has a formal grandiosity that’s well-earned following 5 years of dedicated effort.


I have mixed emotions about losing (err…graduating) my first students:

Pros:
• My students certainly earned their ‘Dr.’ title
• I’ve contributed the growth and development of some truly exceptional scientists and I look forward to seeing what they accomplish next
• I got to hood my first PhDs!
• I got to wear my most expensive outfit (hood + gown = ~$1,000)
• My lab now has room for more new students
• I have several new connections entering the academic and industrial communities
• It’s time. There isn’t much more they can learn from me
• Now that I have academic progeny, I’m more motivated to add my information to my graduate and postdoc advisors’ academic family trees

Cons:
• I lost fifteen years of combined practical lab knowledge in a weekend
• Now that they are especially good at writing papers, they are leaving
• I had more time with these students while creating our lab than I will probably have with any others. I am going to miss them
• I am not entirely sure that all of our instrument and account logins and passwords have been handed down
• They each have their own unique skills. While some of these skills will be replaced by new students, others are irreplaceable

 

In preparation for their departure I contemplated two questions:

1) How do I commemorate my students time in lab?

I really wanted to do something tangible and long lasting to commemorate their time in my group.

Approximately five years ago we started Photo Friday by sharing one photo of our research every week on our Twitter and Instagram accounts. Since then, my group has captured some truly remarkable images. One was selected as C&EN’s 2015 Chemistry in Pictures photo of the year. This included a spread in an issue of C&EN and a grand prize award of a DSLR camera.

My wife and I liked the photos so much that we decided to incorporate them into our home decor. We found an online printing company to create 8” x 12” metal prints of our favorite photos. The number of prints grew and below is a photo of our current collection.

Each photo has its own story. For example, the second photo down on the far right was included in the TOC image of our first corresponding author paper.

So, in a kind of wonderful but unintentional way, we happened upon a way to commemorate my students: we asked them to sign their work. On the back of their photo is I asked the students to write their name, signature, degree, and year of graduation.

2) How do I keep track of them after they leave FSU?

Two years ago, at the Fall 2016 ACS meeting, I organized a special symposium to celebrate the 75th birthday of my postdoc advisor, Thomas J. Meyer. The event included three days of presentations and a dinner for both the speakers and all Meyer group alumni (AKA The Meyer Mafia). Part of my organizing duties involved contacting and inviting as many alumni as I could find. Thankfully, Prof. Meyer’s secretary had an excel spread sheet containing over 150 names spanning more than four decades. While it was not comprehensive, and some of the email addresses and webpages had long-since died, the list was impressive and very helpful nonetheless. The symposium and birthday party were ultimately a huge success. The proceedings even helped populate a book, aptly titled The Ru(bpy)3 Legacy, commemorating Prof. Meyer’s impact on the research community and his students. The book also included a list of all his academic children and their current affiliations.

The symposium allowed me to meet, face-to-face, the people behind the papers I had read for years. It also made me very reflective. How was I going to keep track of my students? Over the course of 4 or 5 years you spend hundreds of hours in meetings together, exchange thousands of emails, and learn a hundred little details that you might not even recognize. For example, I can identify who’s about to enter my office based on the rhythm of the steps coming down the hallway. The advisor / student relationship can sometimes be a love-hate but hopefully it is still deeply rooted in mutual respect. And while we (mentors/advisors/professors) don’t always show the impact students have on us (I for one am an emotionless robot) the bonds of a quality mentor-mentee relationship run deep.

It is for this reason that I am going to do my best to collect private email addresses and current affiliations. My hope now is that they will continue to contact me and update me on their major milestones. It is always a pleasure to hear from Hanson Research Group undergraduates who’ve moved on (even though they have only been gone for a few years). In the future I will look forward to hearing from my newly minted PhD students too.

By June 18, 2018 0 comments Chemistry Art, fun

Chemistry-themed Valentine’s Day Cards – Round Three

You're a freak in the sheets!

An example of my typical brand of (bio)chemical humour.

 

Happy new year, everyone! It’s been a long time since I’ve posted here at the chemistry blog, but as a totally-not-a-New-Year’s-resolution I’ve decided I’d like to resume posting here at least semi-regularly.

A few years ago I had a minor burst of artistic creativity. This primarily concerned chemistry-theme puns of a mildly romantic nature. Having recently defended my PhD and with a glorious eight weeks of pure, unadulterated freedom in hand until I started my first job, I sat down and drew out some sketches that later turned into actual, real Valentine’s Day cards.

I posted them to reddit and had a pretty good response. Chemjobber posted about them on their blog. Mark Reich of C&EN even wrote a little blurb about them in the Newscripts section for the February 8th issue that year. As a result (the lesson here being never encourage a person like me) I made some more the following year, posted them to reddit again, and had a similar (though slightly less enthusiastic) response.

This year I had some more time at home, having taken parental leave after the birth of a child. Quite literally while holding a tiny baby, I managed to make a fresh batch of five cards for Valentine’s Day 2018, and even to re-do the artwork for the original 2016 set (which originally suffered both from my childlike drawing ability and my utter lack of experience using Adobe Illustrator).

Having refrained from posting about it here for the last two years I figured now was as good a time as any to break my (very long) post drought here on the Chemistry Blog.

You can find 2018’s crop of Valentines here.

You can find all of the Valentines here, including the re-done batch from 2016.

Because nothing says “Valentine’s Day” like an endearing groan or sigh from the one you love.

Enjoy!

 

 

By January 1, 2018 1 comment fun

The Secret Science of Superheroes — the origin story


Remember that League of Extraordinary Scientists? You know, the one’s that wrote a book about superheroes in a weekend. Well their Herculean efforts have come to fruition. The Secret Science of Superheroes (published by the Royal Society of Chemistry) is out now and this is what it is where it came from …


If you are going to enjoy a superhero movie (or more pretty much any action film for that matter) you’ve got to be able to suspend disbelief. Especially, for those of us that have a scientific bent. There’s just too much that is just plain impossible and if we whinged about every little detail that wasn’t quite correct we’d sure as hell annoy anyone else trying to enjoy the escapism of a fantasy flick with us. I learnt that particular lesson from my little brother after he hit me because of my incessant complaining about the physical inaccuracies of Road Runner cartoons. I grew out to it, eventually. Or at least learnt to kept my over thinking of animations to myself.

So this book is not about picking holes in movies. Although that is fun … OK, let’s do that a little and get it out of the the way now.

First off spaceships don’t need wings. Without an atmosphere the protrusions are merely decorative. And without any atmosphere there’s no need for them to bank as they turn in the vacuum of space. Plus there is precious little resistance to movement, which means that spacecraft need just as much power to slow down as they did to accelerate (which get’s handly overlooked in the movies). And why do starships always have the same orientation when they meet in space?

Lasers beams — You can’t see them from the side, unless there is something around to scatter the light — see if you can spot the beam next time you use a laser pointer. And whilst we are on the subject, laser beams don’t make ‘puchu puchu’ noises (and even if they did you won’t hear them, at least Alien got that right. Remember, in space no one can hear you scream).

Armour is no good in a crash — It doesn’t matter how much super hard material a superhero encases himself in (we’re looking at you Iron Man), you’re still going to turn to mush when spectacularly crashing into a building. What you really want is something that slows you down gently. That’s why, in the event of a collision, we like cars with airbags and crumple zones, instead of ones constructed from inflexible titanium body work.

Being hit by a bullet (let alone a weightless laser beam) won’t throw you backwards. A 9mm slug, fired from a handgun, has about the same momentum as a water balloon thrown by a child, whilst a football kicked by a professional can easily have 4–5 times the momentum of a bullet. And from my experience water fights rarely result in people getting knocked off their feet by a balloon impact, and footballers loosing their footing is more often the result of their special ability to trip over blades of grass.

All great examples of reality being suspended for the sake of drama. And we’re cool with that, because in a good movie the impossible is allowed, but the improbable isn’t (to paraphrase Aristotle with modern parlance)[1]. So we are fine with faster than light travel, fiery explosions in space (no oxygen = no fire), and laser sound effects. However indestructible metals, webslinging humans and invisibility leave us pondering how science might explain them.

So this book is about trying to suspend the improbable. It is about the ‘missing’ scenes (and science) that could be in movies and comics if what actually gets shown to use on the silver (of flat) screen had any basis in reality. Basically if we accept what we see in the movies what else must be true?
Now I could have taken a typical solitary, leisurely approach to penning this book, holed up in an office writing over months and year. But if I’ve learnt anything from superhero flicks it’s that all the best stories have teams: Give me X-men, The Justice League and the Fantastic Four over the lonely Spiderman or Batman any day. Secondly, faster is better. You never hear of a hero travelling slower than a plodding tortoise or proclaiming to be the most ponderous man alive.

No, a book about heroes needs a more rapid fire, heroic approach. Which is why I assembled a league of extraordinary scientists and set them the Herculean task of writing this book in just 36 hours. Plonked in the middle of the Manchester Science Festival and Salford University’s Science Jam, in a blur of flying fingers worthy of the Flash we cranked out over 200 pages delving into all the nitty gritty science that fascinates us but seems to have been overlooked by movie makers.

Onwards then to some of the most important questions in science. How do heroes handle big data, why did mutant super powers evolve, how might super soldiers be engineered, and just what do superheroes have for breakfast?

But before we get to that, one more thing. Scientist love to categorise things; elements go into periods and groups on a table, life get kingdoms, families and species, matter comes in phases and it goes on. We have a need to take an object or concept and give it a nice neat point on a diagram. And so inevitably, during our frenetic weekend of typing (punctuated with regular trips down rabbit holes — comics strips out of context caused much mirth, google it) a means of charting superpowers emerged. The super hero, intrinsic, extrinsic, location diagram (otherwise known as The SHEILD) also turned out to be a rather neat alternative to the conventional contents page.

Finally, a special thanks to Andy Brunning of Compound Interest fame, for the wonderful infographics that run throughout the book.

 

Image Credit: Andy Brunning

By October 5, 2017 2 comments fun

The Underground Map of the Elements – now with Nh, Mc, Ts & Og



What with the names of the four latest elements being confirmed I thought it time I updated the original Underground Map of the Elements. So here it is resplendent with nihomium, moscovium, organesson and tennessine! Enjoy

Underground map of the elements 2016

Link to PDF version.

By December 3, 2016 9 comments fun