fun

The Secret Science of Superheroes — the origin story


Remember that League of Extraordinary Scientists? You know, the one’s that wrote a book about superheroes in a weekend. Well their Herculean efforts have come to fruition. The Secret Science of Superheroes (published by the Royal Society of Chemistry) is out now and this is what it is where it came from …


If you are going to enjoy a superhero movie (or more pretty much any action film for that matter) you’ve got to be able to suspend disbelief. Especially, for those of us that have a scientific bent. There’s just too much that is just plain impossible and if we whinged about every little detail that wasn’t quite correct we’d sure as hell annoy anyone else trying to enjoy the escapism of a fantasy flick with us. I learnt that particular lesson from my little brother after he hit me because of my incessant complaining about the physical inaccuracies of Road Runner cartoons. I grew out to it, eventually. Or at least learnt to kept my over thinking of animations to myself.

So this book is not about picking holes in movies. Although that is fun … OK, let’s do that a little and get it out of the the way now.

First off spaceships don’t need wings. Without an atmosphere the protrusions are merely decorative. And without any atmosphere there’s no need for them to bank as they turn in the vacuum of space. Plus there is precious little resistance to movement, which means that spacecraft need just as much power to slow down as they did to accelerate (which get’s handly overlooked in the movies). And why do starships always have the same orientation when they meet in space?

Lasers beams — You can’t see them from the side, unless there is something around to scatter the light — see if you can spot the beam next time you use a laser pointer. And whilst we are on the subject, laser beams don’t make ‘puchu puchu’ noises (and even if they did you won’t hear them, at least Alien got that right. Remember, in space no one can hear you scream).

Armour is no good in a crash — It doesn’t matter how much super hard material a superhero encases himself in (we’re looking at you Iron Man), you’re still going to turn to mush when spectacularly crashing into a building. What you really want is something that slows you down gently. That’s why, in the event of a collision, we like cars with airbags and crumple zones, instead of ones constructed from inflexible titanium body work.

Being hit by a bullet (let alone a weightless laser beam) won’t throw you backwards. A 9mm slug, fired from a handgun, has about the same momentum as a water balloon thrown by a child, whilst a football kicked by a professional can easily have 4–5 times the momentum of a bullet. And from my experience water fights rarely result in people getting knocked off their feet by a balloon impact, and footballers loosing their footing is more often the result of their special ability to trip over blades of grass.

All great examples of reality being suspended for the sake of drama. And we’re cool with that, because in a good movie the impossible is allowed, but the improbable isn’t (to paraphrase Aristotle with modern parlance)[1]. So we are fine with faster than light travel, fiery explosions in space (no oxygen = no fire), and laser sound effects. However indestructible metals, webslinging humans and invisibility leave us pondering how science might explain them.

So this book is about trying to suspend the improbable. It is about the ‘missing’ scenes (and science) that could be in movies and comics if what actually gets shown to use on the silver (of flat) screen had any basis in reality. Basically if we accept what we see in the movies what else must be true?
Now I could have taken a typical solitary, leisurely approach to penning this book, holed up in an office writing over months and year. But if I’ve learnt anything from superhero flicks it’s that all the best stories have teams: Give me X-men, The Justice League and the Fantastic Four over the lonely Spiderman or Batman any day. Secondly, faster is better. You never hear of a hero travelling slower than a plodding tortoise or proclaiming to be the most ponderous man alive.

No, a book about heroes needs a more rapid fire, heroic approach. Which is why I assembled a league of extraordinary scientists and set them the Herculean task of writing this book in just 36 hours. Plonked in the middle of the Manchester Science Festival and Salford University’s Science Jam, in a blur of flying fingers worthy of the Flash we cranked out over 200 pages delving into all the nitty gritty science that fascinates us but seems to have been overlooked by movie makers.

Onwards then to some of the most important questions in science. How do heroes handle big data, why did mutant super powers evolve, how might super soldiers be engineered, and just what do superheroes have for breakfast?

But before we get to that, one more thing. Scientist love to categorise things; elements go into periods and groups on a table, life get kingdoms, families and species, matter comes in phases and it goes on. We have a need to take an object or concept and give it a nice neat point on a diagram. And so inevitably, during our frenetic weekend of typing (punctuated with regular trips down rabbit holes — comics strips out of context caused much mirth, google it) a means of charting superpowers emerged. The super hero, intrinsic, extrinsic, location diagram (otherwise known as The SHEILD) also turned out to be a rather neat alternative to the conventional contents page.

Finally, a special thanks to Andy Brunning of Compound Interest fame, for the wonderful infographics that run throughout the book.

 

Image Credit: Andy Brunning

By October 5, 2017 3 comments fun

The Underground Map of the Elements – now with Nh, Mc, Ts & Og



What with the names of the four latest elements being confirmed I thought it time I updated the original Underground Map of the Elements. So here it is resplendent with nihomium, moscovium, organesson and tennessine! Enjoy

Underground map of the elements 2016

Link to PDF version.

By December 3, 2016 10 comments fun

Two years in the life of a lab whiteboard

Two years ago my group and I shared a time-lapse video: A Year in the Life of a New Research Lab.  Shortly after, I picked up a new set of markers and directed the camera at our lab whiteboard. We stopped the camera last week and can now share two years in the life of our whiteboard condensed down to a 1 minute video. It contains one photo a day taken at 11:30 am for ~750 days.


 

 

Note: Some photos have been omitted due to inactivity or because there was proprietary information on the board.

By August 3, 2016 0 comments entertainment, fun

Halloween Chemistry: Cinder Toffee!



How about a spot of halloween chemistry? With nice simple explanations for the trick or treaters.

Cinder toffee!!

You’ll need:

  • Sugar
  • Golden syrup
  • A jam/jelly thermometer
  • Bicarbonate of soda
  • Grease proof paper
  • A baking tray
  • A saucepan

Safety:

The toffee mix gets very hot, be careful when handling in and make sure there’s an adult helping.


What to do:

1. Weigh out 100grams (3.5 oz) of sugar into the saucepan.
2. Add 3 tablespoons of syrup
3. Heat the mixture on a stove whilst stirring it.
4. Check the temperature of the mixture.
5. Carry on heating until it reaches 145-150oC (293-302).
6. Quickly stir in 1 teaspoon of bicarb. It will suddenly bubble up.
7. Now pour it into the baking tray, lined with grease proof paper.
8. Leave it to cool.

9. Break it all up (best done with a hammer) and enjoy!

What’s going on?
So that’s a nice simple recipe for a tasty treat but where is the science?

First off there’s the sugar and syrup. There are actually loads of different types of sugars, the stuff you put in your coffee and the granulated sugar used here is sucrose. It looks like this:

Sucrose
Golden syrup is a mixture of water, sucrose and two other sugars called fructose and glucose. They look like this:
Fructose
Glucose
Sucrose is actually made up of a fructose and glucose molecule that have been joined together.
So why do we need these three sugars to make the toffee? Well, when they are mixed all together they interfere with crystal formation. To explain how this works let’s represent each of the sugars with a different shape.
If we have one type of sugar then the molecules can pack together nice and neatly, like in the diagram. And that is exactly what happens in a crystal. But if you mix them all together they can’t form ordered patterns and so you don’t get crystals forming.
So if we tried to make the toffee with just one type of sugar then we’d end up with crystals forming which make for hard dense toffee (more like a boiled sweet). But by using 3 different sugars the crystals don’t form and instead you end up with a brittle, crunchy, glass like toffee.
Then there’s the bicarbonate of soda. You normally put this in cakes to make them rise. That’s because when you heat up the bicarb it turns to carbon dioxide gas (hence the bubbles in your cakes). The same thing happens here. When you spoon the bicarb into the hot sugar it almost instantly gets converted to carbon dioxide and causes the mixture to foam up.

Hope you enjoy the toffee and whilst you do you can find out more about the science of cinder toffer here.

By October 31, 2015 4 comments chemical education, entertainment, fun