For as long as artificial sweeteners have been used, there has been a varying level of controversy over the safety of their use; both for humans and the environment in general. Saccharin and Aspartame have been plagued by health concerns raised by researchers for decades. Most studies have shown that only in very high concentrations are they dangerous, however few long term (>10 years) studies have been completed, so lower dose, chronic exposure has yet to be rigorously investigated. Currently, most diet sodas use aspartame and saccharin, including my favorite, Coke Zero. Another very popular sugar substitute, sucralose has begun to steal the spotlight away from aspartame in recent years, taking over popular drinks like Crystal Light, Tim Horton’s and Starbucks coffee.
The chlorinated sugar substitute called sucralose
(commercially marketed as Splenda (TM)) was first synthesized in 1976, as part of a collaboration between Queen Elizabeth College in London and the Tate and Lyle Chemical Company. It is manufactured by the selective chlorination of sucrose, in which three of the hydroxyl groups are replaced with chlorine atoms. Supposedly the graduate student, Shashikant Phadnis, working on the synthesis misunderstood his professor’s request to test the chemical as a request to taste the chemical. Just goes to show, sometimes to make a lucrative discovery, a chemist must take the ultimate test!
Whatever happened, it has been found that Sucralose is approximately 600 times sweeter than sucrose, and since being introduced in the USA in 1998, has become one of the leading sweeteners on the market. One of the main reasons for this is that studies have shown that sucralose is highly stable; it doesn’t break down easily due to heat so cooking with it is safe. It also doesn’t dechlorinate over time, photo degrade under visible light, or biodegrade with common bacteria. It is also very insoluble in fat cells, so all of us Americans don’t have to worry about getting a heart attack on the treadmill (at least not from sucralose!). In fact, sucralose is so darn stable, it doesn’t even get broken down in waste treatment plants.
Meet Smitha Ramakrishna, a senior at Corona del Sol High School in Chandler, Arizona, who has been doing research at Arizona State University about sucralose’s inability to be broken down and how this make affect the environment. At only 17 years of age, she has been researching sucralose for nearly 2 years, as part of her greater goal of trying to help with global water issues. She also founded an organization named AWAKE, which is dedicated to increasing her community’s awareness about water-related issues.
She has found that after subjecting sucralose to treatments similar to those used by waste water treatment plants, the sweetener resisted bacterial digestion. Only after a long time and under UV irradiation in the presence of high concentrations of titanium oxide (TiO2) did the sugar break down. Considering that few plants use these methods, the majority of sucralose in wastewater enters the ecosystem. She doesn’t say for sure what effect this will have, but says that preliminary studies suggest high concentrations of sucralose may poison fish.
See more here: That Splenda you’re drinking will be in our water supply for a while
Personally, I think people should use xylitol more. First studied in the 1970’s, almost no negative effects have been found due to ingestion of even 400+ grams a day (imagine 400+ grams of sugar! BLECH!) and many positive health effects have been proven ranging from plaque-reducing effects to boosting your immune system. It is about as sweet as sucrose, and has 2/3 the caloric content.
That said, I am still gonna go get me a coke zero.
Recent Comments