science news

Making sense of chemical stories

Discussions on chemophobia (or whatever you want to call it) is a perennial favourite on chemistry blogs. But the conversation rarely extends out of our echo chamber. But now Sense about Science have joined the discussion with the publication of a guide entitled  Making Sense of Chemical Stories.

Sense about Science is a respected charitable organisation that  ‘equips people to make sense of scientific and medical claims in public discussion’. In short, they facilitate discussions between concerned/interested groups and relevant experts.  The aim of their guide is to bridge the disconnect between the lifestyle view (and popular definition) of chemicals and the realities of how chemistry is used to support the modern world. It does this by tackling common misconceptions about chemistry.

One of the key misconception that they address is that natural chemicals are somehow safer than man-made ones. The wrongheadedness of which is nicely illustrated by a pair of infographics  (designed by Compound Interest) that don’t shy away from admitting synthetic chemicals are often toxic but also make it clear that whether a chemical is naturally occurring or man-made tells us precisely nothing about its toxicity.

SAS - Natural vs. Man-Made Toxicity FINAL (1)


SAS - Dose Makes The Poison FINAL (1)

Making Sense of Chemical Stories is being promoted to the public, journalists, life-style press and policy makers. It, along with the infographics are freely available to download and distribute under a creative commons license. Or if you prefer a hard copy (or box full of them) email enquiries[ at ]senseaboutscience[dot]org  with your contact details.



By May 23, 2014 5 comments science news

Frederick Sanger, 1918-2013

This week Fred Sanger died at the age of 95. His name is probably unfamiliar to most, but he is considered one of the greatest chemists of our age. He is the only person to have won two Nobel prizes for chemistry (only three others have won two Nobel prizes – Marie Curie, Linus Pauling and John Bardeen).

Sanger’s lack of fame is in no small part due to his humble nature and modesty. His sole autobiographical article, written five years after his retirement, starts with the self-deprecating comment: “I was not academically brilliant”. But there is no false modesty here, the article makes no mention of the numerous prizes and honours bestowed on him. These included a knighthood which he turned down, not for any moral objection to the honours system, but because he did not like the idea of being addressed as “Sir”.

Sanger spent his career studying the three fundamental polymers of life – proteins, RNA and DNA. It had long been known that DNA and RNA were made up of strings of just four bases, while proteins are more complicated, consisting of strings of 20 amino acids. However, just knowing this is like understanding that sentences are made of letters but having no idea what order the letters come in. Sanger strove to decipher the order of DNA and RNA’s bases and protein’s amino acids.

Other great (and many familiar) names such as Francis Crick, James Watson, Rosalind Franklin and Max Perutz worked on the 3D structures of these molecules. But Sanger’s work was more fundamental and arguably more useful – he laid the bedrock on which some of the greatest achievements of 21st century science such as the Human Genome Project and all that has followed were built.

Third from right: Sanger at the British Genius Exhibition at Battersea Park. PA

Sanger started his research career in 1943 on proteins. His Quaker upbringing led him to be a conscientious objector, so he was excused from fighting in World War II. He chose to work on insulin, partly because of its medical importance, but also for the practical reason that he could buy it at the local drugstore. It took him 12 years of work in a laboratory to come up with a solution. This dogged persistence and daily lab work characterised his scientific career:

Of the three main activities involved in scientific research, thinking, talking and doing, I much prefer the last and am probably best at it. I am all right at the thinking, but not much good at the talking.

After this success Sanger entered a period that he described as “lean years with no major success”. He had some sage advice on how to deal with these periods that affect many careers, not just scientific ones:

I think these periods occur in most people’s research careers and can be depressing and sometimes lead to disillusion. I have found the best antidote is to keep looking ahead. When an experiment is a complete failure it is best not to spend too much time worrying about it but rather get on with planning and becoming involved in the next one. This is always exciting and you soon forget your troubles

This quote speaks volumes about his values as during this “lean” “depressing” period Sanger was awarded, for his work on insulin, one of his Nobel Prizes.

This period came to end when Sanger began work on sequencing RNA and DNA. In 1971, state-of-the-art science had managed to determine the sequence of a stretch of DNA just 12 bases long (not much use considering the human genome consists of 3 billion bases). By 1978 Sanger had extended the record to 5,386 bases and then to 48,502 bases by 1982. These advances demonstrated that it was now possible to sequence vast stretches of DNA. It was for this work that he was awarded his second Nobel Prize, in 1988. But, probably of more value to Sanger was the knowledge that the DNA sequencing he developed made the global Human Genome project (instigated in 1990 and involving thousands of scientists) possible.

As far as Sanger was concerned, his DNA sequencing method was the climax of his career – and so at the age of 65, at the top of his game, he retired and gave up research. Retiring at 65 may not seem odd, but its is rare for a top scientist where a lifetime spent single-mindedly pursuing knowledge is a hard thing to give up.

Sanger was different. He felt the need for a lifestyle change and heeded the call of his rose bushes. He also wanted to make space for younger scientists, many of whom, through his nurturing, went on to win their own Nobel Prizes. So for the next 30 years he focused on his gardens in Cambridge, never once revelling in the glory that was so rightfully his.

This article was originally published at The Conversation.
Read the original article.

By November 21, 2013 0 comments general chemistry, science news

Bloggers are time wasters

Because we are aren’t we? Really what’s the point? We should be off writing grant proposals, research papers, and (if there is anytime left) maybe do a spot of teaching. Blogging’s not going to get us anywhere, nobody takes it seriously so ,frankly, let’s all just pack it in and get on with some proper work. And if by chance we do stumble across something important (possible plagiarism or fraud maybe) then really we’d best tell the big boys and they’ll sort it out. If we really feel the need to write something about it then we can report the situation once its all sorted out.

Message received and understood.

At least that’s what some members of the community would have us do. Take the commenter (going by the name of bloggersaretimewasters) who responded to Chembark‘s eloquent rebuttal of ACS Nano editorial attempt to put bloggers in their place.

I took the liberty to check out your website at Saint Louis University. I am not sure what the requirements for tenure are in your department, but I can assure you that if you keep up the meager publication output you have had so far (despite working in excellent labs at outstanding universities) you would find it difficult to obtain tenure at a serious and reputable University (though you would likely have a good shot at a community college).
I have also cross referenced the publication output and credentials of several other “bloggers”, like yourself. What you all have in common, besides the self-proclaimed notion that you are doing the community a huge favor by uncovering so many frauds left right and centre is… a modest publication output and an overall “low” scientific profile. By low I don`t mean that you keep a low profile out of modesty, mind you.
Bottom line. How about you people try to forge your careers through your own discoveries and original scientific inquiries, rather than try to get ahead by attempting to undermine the work of others? Ah wait, I guess many of you don`t do it because you are not able to. That`s too bad.
You are wasting a lot of time and resources… I guess it will not really hit you until you are denied tenure. It seems you have started your tenure track position very recently, so maybe you are still in time. Please consider this post as a wake up call, because the day your tenure is denied (through peer review, mind you, not by declared or anonymous bloggers) it will be too late… game over!


I’m sure this attitude is far from uncommon. The majority of the people who think along these lines probably don’t bother reading our “time-wasting” outputs so certainly wouldn’t bother commenting on them. But, in my experience, this is an increasingly archaic view point. I have a permanent academic position in a UK university. I was recently promoted to the Senior Lecturer (UK equivalent of Associate Professor) not despite my blogging and other engagement activities, but, in no small part, BECAUSE of them. And increasingly, certainly in the UK, the need for scientists and academics to effectively communicate their views and work to a wider audience is being recognised: Nature Chemistry highlights bloggers outputs in every issue and take a look at the success of The Conversation, a news site written entirely by academics and sponsored by top research Universities such as Warwick, UCL, and Bristol as well as agencies such as the Wellcome Trust. Or on a smaller scale Guru Magazine again written largely by academics and funded by The Wellcome trust.

Yes my publication list would probably be longer if I did less blogging. But the same goes for spending time with family. Maybe I should stop wasting my time with them as well?

By October 25, 2013 13 comments opinion, science news

Happy Berzelius Day

Today, August 20th, marks the birthday of Swedish chemist Jöns Jacob Berzelius (1779–1848).

I decided to write this post because, frankly, I knew nothing about Berzelius. He seems to be something of an “unsung hero”, despite his important contributions to science. I thought I’d take the opportunity to collect some key facts about this visionary chemist’s life.

The late 18th and early 19th centuries were formative years for modern chemistry. The names of many of the pioneers of that age – such as Lavoisier, Dalton, Avogadro, Volta and Faraday – live on in the minds of scientists to this day (mostly, perhaps, in the form of the units we use). Berzelius lived through much of this revolutionary (in more ways than one) period, and many of his discoveries and innovations have underpinned chemistry for centuries since.

Berzelius trained as a medical doctor, and found himself fascinated by the work of Volta and the latter’s invention of voltaic piles. Berzelius incorporated electricity into his medical research, investigating the effect of direct current on unwell patients. It turned out that giving his patients electric shocks did not improve their condition, but this result didn’t abate Berzelius’ scientific curiosity.

He was living in the golden (or should that be cupro-zinc?) age of electrochemistry. Berzelius was a systematic experimenter, able to collect and collate vast quantities of data and extract trends and conclusions in his analysis. His examination of the electrochemistry of metal salts led him to his theory of “dualism”. This theory proposed that all atoms bore a charge – positive or negative – and that compounds were formed by the neutralisation of opposite charges. This offered an early analogy to ionic bonding. However, the theory of dualism fell out of favour towards the end of Berzelius’ life, as its inability to accommodate new discoveries, including the developing field of organic chemistry, became clear.

It was around the time of Berzelius’ studies on dualism that John Dalton published his New System of Chemical Philosophy (1808), which introduced his development of atomic theory – that elements were made up of indestructible and indivisible atoms, which were identical for a given element. Dalton also published a table of a handful of atomic weights and associated atomic symbols.


Unfortunately, Dalton’s determinations were limited in terms of accuracy, and the majority of known elements were omitted. Berzelius systematically examined all of the elements known at the time, and published 43 atomic weights which have proven remarkably accurate (considering the pioneering nature of the work) when compared to modern values.

As he used so many elements and compounds, Berzelius began to find the chemical notation of the time to be cumbersome. Chemicals were typically represented by pseudo-alchemical symbols, making the construction and parsing of chemical formulae difficult and error-prone.

Berzelius changed all this, and, in a short paper, introduced the basis of the chemical notation we use to this day. He substituted the alchemical symbols for letters: C, Cu, O, etc. The proportion of atoms in a compound was denoted by superscript numbers: CO2. Nowadays, of course, we denote the proportions with subscripts, but in all other respects Berzelius’ notation has stood the test of time remarkably well.


Berzelius also discovered four elements: cerium, selenium, silicon and thorium, and in addition introduced several terms to the chemical lexicon – although their meanings have changed since: allotrope, polymer, catalysis and isomer.

Berzelius’ systematic identification of the chemistry of minerals, along with his many other discoveries, earned him the Royal Society’s Copley Medal in 1836, jointly with Francis Kiernan.

Berzelius’ legacy was doubtless cemented by his publication of numerous widely-translated textbooks. It is interesting to consider that these textbooks may have educated some of the big names of the next generation: Mendeleev, Clausius, Helmholtz, Joule, Bunsen, perhaps even Darwin. Whether or not they did, it is doubtless that they, in common with generations of chemists since, owe much to the discoveries of Berzelius and his contemporaries.

So, today let’s remember Berzelius, one of the “Fathers of Modern Chemistry”.

A bit of trivia:

Berzelius is the academic great-great-great-great-great-great-grandfather of Prof Martyn Poliakoff, of University of Nottingham and Periodic Table of Videos. Small world?

Like many chemists, Berzelius has a piece of glassware bearing his name. A tall and thin glass beaker is otherwise known as a Berzelius beaker.


Sources/further reading:

Periodic Table of Videos – Berzelius

For a review on Berzelius’ techniques and involvement with atomic weights, see W. MacNevin, J. Chem. Educ.195431, 207. (paywall)

All images are public domain.