Post Tagged with: "Yiping Zhao"

NanoPropulsion


Stephen J. Ebbens

Jonathan Howse

The current state of the art in nanopropulsion devices was recently reviewed by Ebbens and Howse in an article last Friday.[SoftMatter] A short summary of the nano- systems is presented below with video action shots when I could find them.

The Whitesides

Catalyst: Pt
Fuel: H2O2
Propulsion: Bubble propulsion
Terrain: Aqueous meniscus
Max Speed: 2 cm/s
Mitch’s Name: The Karl Benz (since it was the first)
Article: Autonomous Movement and Self-Assembly

The Sen-Mallouk-Crespi

Catalyst: Pt
Fuel: H2O2
Propulsion: Self electrophoresis/Interfacial tension
Terrain: Settled near boundary in aqueous solution
Max Speed: 6.6 um/s
Mitch’s Names: The Ford Mustang of nanopropulsion. (It is a hot rod, get it?)
Article: Catalytic Nanomotors: Autonomous Movement of Striped Nanorods

The Jones-Golestanian

Catalyst: Pt
Fuel: H2O2
Propulsion: Pure self diffusiophoresis
Terrain: Free aqueous solution
Max Speed: 3um/s
Mitch’s Name: The Volkswagen Beetle
Article: Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk

The Mano-Heller

Catalyst: Glucose oxidase and Biliruben oxidase
Fuel: Glucose
Propulsion: Self electrophoresis
Terrain: Aqueous meniscus
Max Speed: 1 cm/s
Mitch’s Name: The Komatsu Truck (because it is huge)
Article: Bioelectrochemical Propulsion

The Feringa

Catalyst: Synthetic catalse
Fuel: H2O2
Propulsion: Bubble/interfacial
Terrain: Acetonitrile solution
Max Speed: 35 um/s
Mitch’s Name: The F150 (has some exhaust issues)
Article: Catalytic molecular motors: fuelling autonomous movement by a surface bound synthetic manganese catalase

The Sen-Mallouk

Catalyst: Pt (CNT) (+cathodic reactions at Au)
Fuel: H2O2/N2H4
Propulsion: Self electrophoresis
Terrain: Settled near boundary in aqueous solution
Max Speed: 200 um/s
Mitch’s Names: The Ford Mustang GT (has more kick than the regular version)
Article: Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions

The Feringa v2

Catalyst: Glucose oxidase and catalse
Fuel: Glucose
Propulsion: Local oxygen bubble formation
Terrain: Free aqueous buffer solution
Max Speed: 0.2–0.8 um/s
Mitch’s Name: The Chevrolet Nova (more hot rod action)
Article: Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble

The Gibbs-Zhao

Catalyst: Pt
Fuel: H2O2
Propulsion: Bubble release mechanism
Terrain: Aqueous solution
Max Speed: 6 um/s
Mitch’s Name: The Rover
Article: Autonomously motile catalytic nanomotors by bubble propulsion

The Bibette

Engine: External magnetic field
Propulsion: Flagella
Terrain: Aqueous solution
Max Speed: unknown
Mitch’s name: The BMW Mini E (because there is no such thing as a magnetic car)
Article: Microscopic artificial swimmers

The Sagués

Engine: External magnetic field
Propulsion: Doublet rotation coupling with boundary interactions
Terrain: Settled near boundary in aqueous solution
Max Speed: 3.2 um/s
Mitch’s Name: The Smart ED
Article: Magnetically Actuated Colloidal Microswimmers

The Fischer

Engine: External magnetic field
Propulsion: Propeller drive
Terrain: Aqueous solution
Max Speed: 40 um/s
Mitch’s Name:
Article: Controlled Propulsion of Artificial Magnetic Nanostructured Propellers

The Najafi-Golestanian

Engine: Conformation changes in linking units
Propulsion: Time irreversible translations
Terrain: Free solution
Max Speed: ?
Mitch’s Name: The Eternal Concept Car
Article: Propulsion at low Reynolds number



Some devices that were not included by the authors of the review article, but should definitely be included in any list like this are below:

The Gracias

Engine: External magnetic field
Propulsion: Brute Force
Terrain: Aqueous solution
Max Speed: ?
Mitch’s Name: The Truck Cranes
Article: Tetherless thermobiochemically actuated microgrippers

Tetherless Microgrippers Grabs Tissue SampleWatch today’s top amazing videos here

The Nelson

null
Engine: External electromagnetic fields
Propulsion: Flagella
Terrain: ?
Max Speed: 18 um/s
Mitch’s Name: The Tesla Roadster (simply awesome)
Article: Characterizing the Swimming Properties of Artificial Bacterial Flagella

Artificial SpermWatch more funny videos here




Link to Review Article: In pursuit of propulsion at the nanoscale

Mitch

By January 16, 2010 5 comments materials chemistry