Post Tagged with: "Obituary"

Professor Anthony Russell Clarke  1959 – 2016

Anyone who has completed a doctoral thesis will testify to the almost parental like relationship a PhD supervisor has with their students. And so it is with great sadness that I heard my PhD supervisor Professor Anthony Russell Clarke, aged just 57, had passed away this week.


Tony Clarke. Photo Credit. Emma Cordwell

To his friends, students and colleagues Tony Clarke was chaos incarnate. Anyone who worked with him can testify to the apparent disarray of his lab and life. The humdrum cycle of the working week didn’t impinge on Tony’s habits. For Tony there was no such thing as ‘work/life balance’, there was just Life. Sometimes the most appropriate thing to do with life was to head out to sea on his beloved boat, at other times the lab was the place to be. His wayward lifestyle made Tony a challenging person to work with; society doesn’t care for chaos, it prefers tidy plans, filed reports and scheduled meetings.

And so to many it was incredibly difficult to pinpoint how or why his group and indeed his mind worked so productively. It appeared to the outsider that disorder reigned. In fact true chaos ruled; chaos from which, as in nature itself, beauty and order emerges. Of course something is needed to trigger the emergence of order from a chaotic system. And in Tony’s case the attractor around which order condensed was his unwavering insistence on experimental rigour and reproducibility.

Inspiration, creativity, curiosity; Tony had these in spades. Everyone who ever worked with him couldn’t help but admire his intellect, wit, charm and passion. And so they overlooked, as best they could, his social transgressions. Most of his exasperated superiors let him get on with his research, content with his prolific outputs, the wise garnered his genius. Meanwhile his PhD and post-docs rallied around trying to keep his admin on track by digging out the most important forms and documents hidden in his office’s archaeological filing system (the deeper in a stack, the older the documents). This remained a workable system threatened only by the occasional  tectonic movements that disrupted the order.

Tony was an outstanding scientist. He received a SERC Personal Fellowship at 26, a Lister Fellowship at 36 and a personal chair at 41. Churning out seminal work in enzymology, protein engineering, protein folding and prion disease throughout his career. He retired through ill health at 55 with 183 papers, including 4 in Nature and 2 in Science, and an H-index of 49 under his belt.  But the numbers don’t do his achievements justice, his real legacy are the results of his infectious passion for science. He showed us that curiosity was key, that it was the exploratory process that was the interesting bit. Those that had the honour to work alongside him (for he always treated his charges as equals) are left with a life-long love of discovery. Tony burnt out early (his fondness for cigarette and a liquid diet hardly helped) but those of us whom he took along for the ride will benefit from his energy throughout our lives and careers.

It is perhaps worth noting that within hours of his death the hundreds of people whose lives he touched, spread as they were over decades of scientific discovery and thousands of miles, had all learned of his passing. The “Clarke-collective” had begun to grieve.

The world is a far less interesting place without Tony Clarke. His family, friends, students and colleagues will miss him greatly.

“We are able to find everything in our memory, which is like a dispensary or chemical laboratory in which chance steers our hand sometimes to a soothing drug and sometimes to a dangerous poison” Marcel Proust.

By July 12, 2016 45 comments Uncategorized

Frederick Sanger, 1918-2013

This week Fred Sanger died at the age of 95. His name is probably unfamiliar to most, but he is considered one of the greatest chemists of our age. He is the only person to have won two Nobel prizes for chemistry (only three others have won two Nobel prizes – Marie Curie, Linus Pauling and John Bardeen).

Sanger’s lack of fame is in no small part due to his humble nature and modesty. His sole autobiographical article, written five years after his retirement, starts with the self-deprecating comment: “I was not academically brilliant”. But there is no false modesty here, the article makes no mention of the numerous prizes and honours bestowed on him. These included a knighthood which he turned down, not for any moral objection to the honours system, but because he did not like the idea of being addressed as “Sir”.

Sanger spent his career studying the three fundamental polymers of life – proteins, RNA and DNA. It had long been known that DNA and RNA were made up of strings of just four bases, while proteins are more complicated, consisting of strings of 20 amino acids. However, just knowing this is like understanding that sentences are made of letters but having no idea what order the letters come in. Sanger strove to decipher the order of DNA and RNA’s bases and protein’s amino acids.

Other great (and many familiar) names such as Francis Crick, James Watson, Rosalind Franklin and Max Perutz worked on the 3D structures of these molecules. But Sanger’s work was more fundamental and arguably more useful – he laid the bedrock on which some of the greatest achievements of 21st century science such as the Human Genome Project and all that has followed were built.

Third from right: Sanger at the British Genius Exhibition at Battersea Park. PA

Sanger started his research career in 1943 on proteins. His Quaker upbringing led him to be a conscientious objector, so he was excused from fighting in World War II. He chose to work on insulin, partly because of its medical importance, but also for the practical reason that he could buy it at the local drugstore. It took him 12 years of work in a laboratory to come up with a solution. This dogged persistence and daily lab work characterised his scientific career:

Of the three main activities involved in scientific research, thinking, talking and doing, I much prefer the last and am probably best at it. I am all right at the thinking, but not much good at the talking.

After this success Sanger entered a period that he described as “lean years with no major success”. He had some sage advice on how to deal with these periods that affect many careers, not just scientific ones:

I think these periods occur in most people’s research careers and can be depressing and sometimes lead to disillusion. I have found the best antidote is to keep looking ahead. When an experiment is a complete failure it is best not to spend too much time worrying about it but rather get on with planning and becoming involved in the next one. This is always exciting and you soon forget your troubles

This quote speaks volumes about his values as during this “lean” “depressing” period Sanger was awarded, for his work on insulin, one of his Nobel Prizes.

This period came to end when Sanger began work on sequencing RNA and DNA. In 1971, state-of-the-art science had managed to determine the sequence of a stretch of DNA just 12 bases long (not much use considering the human genome consists of 3 billion bases). By 1978 Sanger had extended the record to 5,386 bases and then to 48,502 bases by 1982. These advances demonstrated that it was now possible to sequence vast stretches of DNA. It was for this work that he was awarded his second Nobel Prize, in 1988. But, probably of more value to Sanger was the knowledge that the DNA sequencing he developed made the global Human Genome project (instigated in 1990 and involving thousands of scientists) possible.

As far as Sanger was concerned, his DNA sequencing method was the climax of his career – and so at the age of 65, at the top of his game, he retired and gave up research. Retiring at 65 may not seem odd, but its is rare for a top scientist where a lifetime spent single-mindedly pursuing knowledge is a hard thing to give up.

Sanger was different. He felt the need for a lifestyle change and heeded the call of his rose bushes. He also wanted to make space for younger scientists, many of whom, through his nurturing, went on to win their own Nobel Prizes. So for the next 30 years he focused on his gardens in Cambridge, never once revelling in the glory that was so rightfully his.

This article was originally published at The Conversation.
Read the original article.

By November 21, 2013 0 comments general chemistry, science news